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ABSTRACT

The first enantioselective total synthesis of 10-isocyano-4-cadinene, a marine sesquiterpene isolated from nudibranchs of the family Phyllidiidae,
was achieved. The cadinene is expected to be a novel nontoxic antifouling agent. In the synthesis, an intermolecular Diels-Alder reaction and
a SmI2-induced Barbier-type reaction were employed as key steps. The absolute configuration of 10-isocyano-4-cadinene was determined to
be (1S, 6S, 7R, 10S) on the basis of the total synthesis. Antifouling activities against Balanus amphitrite with both enantiomers of 10-isocyano-
4-cadinene were also evaluated.

10-Isocyano-4-cadinene (1), a marine sesquiterpene isolated
by Okino et al.1 from nudibranchs of the family Phyllidiidae
along with other sesquiterpenes, such as 10-isocyano-4-
amorphene (2), 2-isocyanotrachyopsane (3), and axisoni-
trile-3 (4), exhibits potent antifouling activity2 against the
larvae of the barnacle Balanus amphitrite (Figure 1). As a
fouling inhibitor, tributyltin (TBT)3 has been used widely
in ships’ hulls and fishing nets since the early 1960s.
Unfortunately, due to the toxicity of TBT, the marine

environment has been seriously compromised. For example,
TBT-exposed oysters exhibit abnormal shell development,
brittle shells, poor weight gain, and imposex.4 Thus, cadinene
1 is expected to be a novel lead compound5 for nontoxic
antifouling agents. Structurally, 1 has four continuous
stereocenters, including a quaternary carbon center with a
biologically important isocyanide group. Although the rela-
tive configuration of 1 was assigned as shown in Figure 1
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using 1D and 2D NMR experiments, the absolute configu-
ration has not been determined. Herein, we report the first
total synthesis of both enantiomers of 1 and the determination
of absolute configuration based on the enantioselective total
synthesis.

Retrosynthetic analysis of 1 is shown in Scheme 1. We
envisioned the construction of the trans relationship between
C1 and C6 by intermolecular Diels-Alder reaction6 followed
by isomerization under basic conditions because it is known
that cis-decalin frameworks are selectively formed through
the corresponding intramolecular Diels-Alder reaction.7,8

The functional groups at C10 would be installed with the
ketone 8 at a later stage of the synthesis. To construct the

cyclohexane ring of 8, Barbier-type cyclization induced by
SmI2 would be employed with aldehyde 9, derived from the
carboxylic acid 10. As mentioned above, the trans relation-
ship at C1 and C6 in 10 would be constructed by an
intermolecular Diels-Alder reaction with methyl acrylate
and the diene 11, followed by isomerization.

The synthesis commenced with the known imide 12,9

prepared via Evans alkylation with allyl bromide (Scheme
2). After the OsO4 oxidation of the olefin moiety followed

by spontaneous lactonization of the resultant diol, acetylation
of the primary alcohol gave the acetate 13, and the chiral
auxiliary was recovered.9b The acetate 13 was converted into
the alcohol 14 through LiBH4 reduction and subsequent
selective acetonide protection of the 1,2-diol moiety. Swern
oxidation of 14 and successive Horner-Wadsworth-Emmons
reaction using diethyl (2-methylallyl) phosphonate 157m,10

yielded the E-diene 16 as a single geometric isomer. The
diene 16 was then transformed to the intermolecular
Diels-Alder precursor 11 by the following sequence of
transformations: (1) one-pot deprotection of the acetonide
group and oxidative treatment with NaIO4, (2) reduction of
the resulting aldehyde (Scheme 2), and (3) acetylation
(Scheme 3). The intermolecular Diels-Alder reaction of 11
with methyl acylate in the presence of MeAlCl2

11 in xylene12

afforded cyclohexene 18 as a mixture of four diastereomers
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Figure 1. Sesquiterpenes from nudibranchs of the family Phylli-
diidae.

Scheme 1. Retrosynthetic Analysis of 10-Isocyano-4-cadinene

Scheme 2. Synthesis of Diene Alcohol 17
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in good yield. The mixture was equilibrated with NaOMe
in MeOH (0.08 M) to that of the two trans-esters 19 and
20. The desired ester 19 was hydrolyzed with complete
selectivity by the slow addition of 1 N HCl to the MeOH
solution at 0 °C to provide the easily separable mixture of
the desired carboxylic acid 10 and the unhydrolyzed ester
20 (10:20 ) 2:1). Separation of these two trans diastereomers
was essential for the total synthesis. After extensive studies,
we found the excellent method mentioned above.13

With the cyclohexene in hand, we turned our attention to
construction of the right side cyclohexane ring and the
quaternary carbon center at C10. The carboxylic acid 10 was
transformed to the cyclization precursor 9 in 4 steps (Scheme
4). The SmI2-induced Barbier-type cyclization14 of 9 in the

presence of HMPA occurred cleanly in excellent yield to
give the alcohol 21, which was oxidized with Dess-Martin
periodinane (DMP).15 To construct the quaternary carbon
center, the nitrile 22 was derived from ketone 8 with
p-toluenesulfonylmethyl isocyanide (TosMIC).7l,16 The nitrile
22 was next reduced to the aldehyde 23 (Scheme 5).17 The
alkylation of 23 with p-methoxybenzyl chloromethyl ether
2418 successfully afforded the PMB ether,19,20 which was
subjected to Wolff-Kishner conditions21 to afford the PMB
ether 25 as a single diastereomer. The PMB ether 25 was
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Scheme 3. Diels-Alder Reaction Using the Lewis Acid

Scheme 4. Synthesis of Nitrile 22
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converted into the aldehyde by removal of the PMB group
with DDQ, followed by Dess-Martin oxidation. Pinnick
oxidation led to the carboxylic acid 26, which was subjected
to Curtius rearrangement using diphenylphosphoryl azide
(DPPA)7l,22 to give the isocyanate. The isocyanato group
was converted into an isonitrile group in two steps by NaBH4

reduction22 and dehydration of 10-formamido-4-cadinene
(27)23 to achieve the total synthesis of 1. All spectroscopic
data (1H and 13C NMR, MS, IR) of synthetic 1 are identical
to those of natural 1. The optical rotation of synthetic (+)-
1, [R]D

23 +59.8 (c 0.65, CHCl3), is similar to that of the
natural product, [R]D

23 +63.6 (c 0.60, CHCl3).
1 We also

synthesized the enantiomer, (-)-10-isocyano-4-cadinene (ent-
1), from the (+)-imide ent-12 via the (-)-carboxylic acid
ent-10 by using the same synthetic procedure (Scheme 6).
The optical rotation of (-)-ent-1, [R]D

23 -58.2 (c 0.68,
CHCl3), is opposite in sign to that of the natural product.

Therefore, the absolute configuration of (+)-1 is unambigu-
ously established as (1S, 6S, 7R, 10S).

Antifouling activities were evaluated with both (+)-1 and
(-)-ent-1. Table 1 shows EC50 values (50% effective

concentration) against cyprid larvae of the barnacle Balanus
amphitrite exposed to each compound for 48 h. Interestingly,
both compounds showed almost the same EC50 values, which
correspond to that of the natural sample. These results clearly
suggest that the absolute configuration of 10-isocyano-4-
cadinene has no effect on the antifouling activity.

In summary, the first total synthesis of (+)- and (-)-10-
isocyano-4-cadinene was completed by an intermolecular
Diels-Alder reaction and SmI2-induced Barbier-type reaction
to construct the characteristic trans-decalin framework. The
absolute configuration of natural 10-isocyano-4-cadinene was
determined to be (1S, 6S, 7R, 10S). Furthermore, it was
revealed that both enantiomers have almost the same
antifouling activities.
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Scheme 5. Synthesis of (+)-10-Isocyano-4-cadinene (1) Scheme 6. Synthesis of (-)-10-Isocyano-4-cadinene (ent-1)

Table 1. Bioactivities of Synthetic (+)- and
(-)-10-Isocyano-4-cadinene

entry compound EC50
a

1 natural (+)-1b 0.14 µg/mL
2 synthetic (+)-1 0.06 µg/mL
3 synthetic (-)-ent-1 0.08 µg/mL

a EC50 (µg/mL): antifouling activities against Balanus amphitrite. b See
ref 1.
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